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Preface

 Krizhevsky et al. (2012): AlexNet

 Zeiler and Fergus (2013): ZFNet

 Sermanet et al. (2014): OverFeat

 Szegedy et al. (2014): Inception



Paper Review:

Introduction



Introduction

 ConvNets rise in image and video recognition:

 Large public databases: ImageNet

 High-performance computing: GPUs

 ILSVRC (ImageNet Large-Scale Visual Recognition 

Challenge) as testbed for image classification systems 



ImageNet

 14 million images

 1 million images with bounding 

boxes annotations



Introduction

 Previous improvements over AlexNet:

 Smaller receptive window size and stride (OverFeat, 

ZFNet)

 Training and testing over whole image on multiple scales 

(OverFeat)

 This paper improvement: network depth



ConvNet

Configurations



Architecture

 Input: 224x224 RGB image

 Preprocessing: subtracting mean RGB value, computed on the 

training set, from each pixel

 Output: probability for each of the 1000 classes

 ReLU activation function on hidden layers



Architecture
 Building blocks:

 Convolutional layer: 3x3 with 1-pixel padding or 1x1 filter, both with 

1-pixel stride

 Max-pool layer: 2x2 with 2-pixel stride

 Fully-connected layers: 4096 channels and 1000 channels

 Soft-max layer



Architecture



 Same building blocks as stated in previous slides

 Only differ in number of conv. layers

 Width of conv. layers (no. of channels) starts 

from 64 and increases by 2 until reaching 512

Configurations



 Less weights than in a more shallow net with larger conv. layer 

widths and receptive fields (144M weights in OverFeat)

Configurations



 VGG quite different from previous top-performers:

 ILSVRC-2012: 11×11 receptive field with stride 4 in 

AlexNet

 ILSVRC-2013 : 7×7 receptive field with stride 2 in ZFNet

and same as AlexNet and OverFeat

Discussion



 VGG uses very small 3 × 3 receptive fields with stride 1: 

 Stacks of layers with smaller fields have same effective receptive field as 

bigger fields

 Benefits:

 More non-linear rectification layers => More discriminative decision function

 Decrease the number of parameters:

 Three 3x3 conv. layers: 3(3^2*C^2) = 27 C^2 weights

 7×7 conv. layer: 7^2*C^2 = 49 C^2 parameters

 81% less for 3x3 vs 7x7

Discussion



 Benefits of 1 × 1 conv. layers:

 Increase non-linearity of decision function

 Does not affect receptive field of conv. layers

Discussion



 Lin et al. (2014):

 1x1 convolutional filters in “Network in Network” architecture 

 Ciresan et al. (2011):

 Used small-size convolution filters

 Significantly less deep nets.

 Did not evaluate on the large-scale ILSVRC dataset

 Goodfellow et al. (2014):

 Deep ConvNets (11 weight layers) in the task of street number recognition

and showed increased depth led to better performance

Discussion



 GoogLeNet (Inception):

 Top-performing entry of the ILSVRC-2014 classification task

 Similarly based on very deep ConvNets(22 weight layers) and small 

convolution filters (1×1, 3x3 and 5x5 convolutions). 

 Network topology is more complex

 Spatial resolution more reduced in first layers to decrease computation

 VGG outperforms Inception in single-network classification accuracy

Discussion



Classification 

Framework



 Mini-batch gradient descent with momentum

 Batch size : 256 

 Momentum : 0.9

 Regularization

 L2 penalty multiplier : 5 ∙ 10−4

 First two fully connected layers: dropout regularization with 

dropout ratio of 0.5

Training



 Learning rate: 0.01

 Decreased by a factor of 10 when the validation set accuracy 

stopped improving

 Learning rate decreases 3 times

 Stopped after 370K iterations (74 epochs)

Training



 Initialization of weights can be a problem

 Random initialization of weights with normal distribution (μ = 0, 𝜎2 =

10−2) and biases = 0

 Train Configuration A with random initializationand use pre-trained 

weights for other configurations:

 Initialize first 4 conv. layers and last 3 FC layers

 No decreasing learning rate

Training



 Crop-size fixed at 224x224

 Training set augmentation:

 Random RGB color shift

 Random horizontal flipping

Training image size



 Rescale to training scale S ≧ 224. Crop to 224x224

 Single-scale training (Fixed S): S = 256 or S = 384

 First, train S = 256 and then initialize S = 384 with pre-trained weights from S 

= 256 and smaller initial learning rate (10^-3)

 Multi-scale training: sampling from [Smin, Smax] and Smin = 256, Smax = 512

 Training set augmentation by scale jittering

 Fine-tuning with pre-trained weights from fixed S = 384

Training image size



 Rescale the image to a smallest side Q (not necessarily equal to S)

 Test-set augmentation: horizontal flipping of images = > Soft-max of 

original and flipped averaged to obtain final result

Testing



 Dense evaluation:

 FC layers convert to convolutional layers

 Variable resolution (depending on input)

 Results: a class score map with no. of channels = no. of classes

 Multi-crop: 50 crops per scale for a total  of 150 crops

Testing



 C++ Caffe (Convolutional Architecture for Fast

Feature Embedding) toolbox with some modification

 4 NVIDIA Titan Black GPUs:

 Speed-up of 3.75 times vs single GPU

 Single-net training from to 2-3 weeks

Implementation



Classification 

Experiments



Data

 ILSVRC-2012 dataset

 1000 classes

 1.3 M training images

 50 K validation images

 100 K testing images

 Two performance metrics: Top-1 error and Top-5 error



Single-Scale Evaluation
 Q = S for fixed S

 Q = 0.5(Smin + Smax) for jittered S ∈ [Smin, Smax]



 Local Response Normalization doesn’t help

Single-Scale Evaluation



 Performance clearly favors depth (size matters!)

Single-Scale Evaluation



 Prefers 3x3 to 1x1 filters

Single-Scale Evaluation



 Scale jittering at training helps performance

 Performance starts to saturate with depth 

Single-Scale Evaluation



Multi-Scale Evaluation
 Multi-Scale Evaluation

 Run model over several rescaled versions, or Q-values, 

and average resulting posteriors

 For fixed S, Q = {S − 32, S, S + 32}

 For jittered S, S ∈ [Smin; Smax], Q = {Smin, 0.5(Smin + 

Smax), Smax}



Same pattern: depth and prefer jittering, performance 

starts to saturate with depth 

Multi-Scale Evaluation



 Does slightly better than dense

 Best result is averaging both posteriors

Multi-Crop Evaluation



 Average soft-max class posteriors

 Only got multi-crop results after submission

2-net post submission better than 7-net

ConvNet Fusion



 7-net submission got 2nd place classification

 2-net post-submission even better!

 1st place, Szegedy, uses 7-nets

ISLVRC-2014 Challenge



Conclusion

 Main contribution: effect of depth on CNN performance

 VGG-16 and VGG-19 (and others) commonly found as 

pre-trained models as part of DL packages (TF, PyTorch)
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