
VGG Net
DEEP LEARNING PAPER PRESENTATION

GROUP 3

Index
 Preface

 Paper Review

 Introduction

 ConvNet Configurations

 Classification Framework

 Classification Experiments

 Conclusion

Preface
 “Very Deep Convolutional Networks for Large-Scale

Image Recognition”

 VGG: Visual Geometry Group, Department of

Engineering Science, University of Oxford.

 Karen Simonyan & Andrew Zisserman

 ICLR (International Conference on Learning

Representation) 2015

Preface

 Krizhevsky et al. (2012): AlexNet

 Zeiler and Fergus (2013): ZFNet

 Sermanet et al. (2014): OverFeat

 Szegedy et al. (2014): Inception

Paper Review:

Introduction

Introduction

 ConvNets rise in image and video recognition:

 Large public databases: ImageNet

 High-performance computing: GPUs

 ILSVRC (ImageNet Large-Scale Visual Recognition

Challenge) as testbed for image classification systems

ImageNet

 14 million images

 1 million images with bounding

boxes annotations

Introduction

 Previous improvements over AlexNet:

 Smaller receptive window size and stride (OverFeat,

ZFNet)

 Training and testing over whole image on multiple scales

(OverFeat)

 This paper improvement: network depth

ConvNet

Configurations

Architecture

 Input: 224x224 RGB image

 Preprocessing: subtracting mean RGB value, computed on the

training set, from each pixel

 Output: probability for each of the 1000 classes

 ReLU activation function on hidden layers

Architecture
 Building blocks:

 Convolutional layer: 3x3 with 1-pixel padding or 1x1 filter, both with

1-pixel stride

 Max-pool layer: 2x2 with 2-pixel stride

 Fully-connected layers: 4096 channels and 1000 channels

 Soft-max layer

Architecture

 Same building blocks as stated in previous slides

 Only differ in number of conv. layers

 Width of conv. layers (no. of channels) starts

from 64 and increases by 2 until reaching 512

Configurations

 Less weights than in a more shallow net with larger conv. layer

widths and receptive fields (144M weights in OverFeat)

Configurations

 VGG quite different from previous top-performers:

 ILSVRC-2012: 11×11 receptive field with stride 4 in

AlexNet

 ILSVRC-2013 : 7×7 receptive field with stride 2 in ZFNet

and same as AlexNet and OverFeat

Discussion

 VGG uses very small 3 × 3 receptive fields with stride 1:

 Stacks of layers with smaller fields have same effective receptive field as

bigger fields

 Benefits:

 More non-linear rectification layers => More discriminative decision function

 Decrease the number of parameters:

 Three 3x3 conv. layers: 3(3^2*C^2) = 27 C^2 weights

 7×7 conv. layer: 7^2*C^2 = 49 C^2 parameters

 81% less for 3x3 vs 7x7

Discussion

 Benefits of 1 × 1 conv. layers:

 Increase non-linearity of decision function

 Does not affect receptive field of conv. layers

Discussion

 Lin et al. (2014):

 1x1 convolutional filters in “Network in Network” architecture

 Ciresan et al. (2011):

 Used small-size convolution filters

 Significantly less deep nets.

 Did not evaluate on the large-scale ILSVRC dataset

 Goodfellow et al. (2014):

 Deep ConvNets (11 weight layers) in the task of street number recognition

and showed increased depth led to better performance

Discussion

 GoogLeNet (Inception):

 Top-performing entry of the ILSVRC-2014 classification task

 Similarly based on very deep ConvNets(22 weight layers) and small

convolution filters (1×1, 3x3 and 5x5 convolutions).

 Network topology is more complex

 Spatial resolution more reduced in first layers to decrease computation

 VGG outperforms Inception in single-network classification accuracy

Discussion

Classification

Framework

 Mini-batch gradient descent with momentum

 Batch size : 256

 Momentum : 0.9

 Regularization

 L2 penalty multiplier : 5 ∙ 10−4

 First two fully connected layers: dropout regularization with

dropout ratio of 0.5

Training

 Learning rate: 0.01

 Decreased by a factor of 10 when the validation set accuracy

stopped improving

 Learning rate decreases 3 times

 Stopped after 370K iterations (74 epochs)

Training

 Initialization of weights can be a problem

 Random initialization of weights with normal distribution (μ = 0, 𝜎2 =

10−2) and biases = 0

 Train Configuration A with random initializationand use pre-trained

weights for other configurations:

 Initialize first 4 conv. layers and last 3 FC layers

 No decreasing learning rate

Training

 Crop-size fixed at 224x224

 Training set augmentation:

 Random RGB color shift

 Random horizontal flipping

Training image size

 Rescale to training scale S ≧ 224. Crop to 224x224

 Single-scale training (Fixed S): S = 256 or S = 384

 First, train S = 256 and then initialize S = 384 with pre-trained weights from S

= 256 and smaller initial learning rate (10^-3)

 Multi-scale training: sampling from [Smin, Smax] and Smin = 256, Smax = 512

 Training set augmentation by scale jittering

 Fine-tuning with pre-trained weights from fixed S = 384

Training image size

 Rescale the image to a smallest side Q (not necessarily equal to S)

 Test-set augmentation: horizontal flipping of images = > Soft-max of

original and flipped averaged to obtain final result

Testing

 Dense evaluation:

 FC layers convert to convolutional layers

 Variable resolution (depending on input)

 Results: a class score map with no. of channels = no. of classes

 Multi-crop: 50 crops per scale for a total of 150 crops

Testing

 C++ Caffe (Convolutional Architecture for Fast

Feature Embedding) toolbox with some modification

 4 NVIDIA Titan Black GPUs:

 Speed-up of 3.75 times vs single GPU

 Single-net training from to 2-3 weeks

Implementation

Classification

Experiments

Data

 ILSVRC-2012 dataset

 1000 classes

 1.3 M training images

 50 K validation images

 100 K testing images

 Two performance metrics: Top-1 error and Top-5 error

Single-Scale Evaluation
 Q = S for fixed S

 Q = 0.5(Smin + Smax) for jittered S ∈ [Smin, Smax]

 Local Response Normalization doesn’t help

Single-Scale Evaluation

 Performance clearly favors depth (size matters!)

Single-Scale Evaluation

 Prefers 3x3 to 1x1 filters

Single-Scale Evaluation

 Scale jittering at training helps performance

 Performance starts to saturate with depth

Single-Scale Evaluation

Multi-Scale Evaluation
 Multi-Scale Evaluation

 Run model over several rescaled versions, or Q-values,

and average resulting posteriors

 For fixed S, Q = {S − 32, S, S + 32}

 For jittered S, S ∈ [Smin; Smax], Q = {Smin, 0.5(Smin +

Smax), Smax}

Same pattern: depth and prefer jittering, performance

starts to saturate with depth

Multi-Scale Evaluation

 Does slightly better than dense

 Best result is averaging both posteriors

Multi-Crop Evaluation

 Average soft-max class posteriors

 Only got multi-crop results after submission

2-net post submission better than 7-net

ConvNet Fusion

 7-net submission got 2nd place classification

 2-net post-submission even better!

 1st place, Szegedy, uses 7-nets

ISLVRC-2014 Challenge

Conclusion

 Main contribution: effect of depth on CNN performance

 VGG-16 and VGG-19 (and others) commonly found as

pre-trained models as part of DL packages (TF, PyTorch)

References
 [1]“tf.keras.applications.VGG16 | TensorFlow Core r2.0,” TensorFlow. [Online]. Available:

https://www.tensorflow.org/api_docs/python/tf/keras/applications/VGG16. [Accessed: 04-Dec-2019].

 [2]“ImageNet.” [Online]. Available: http://www.image-net.org/. [Accessed: 04-Dec-2019].

 [3]“GeForce GTX TITAN Black Gaming Graphics Card | NVIDIA.” [Online]. Available: https://www.nvidia.com/gtx-700-graphics-cards/gtx-
titan-black/. [Accessed: 05-Dec-2019].

 [4]“Deep Learning by deeplearning.ai,” Coursera. [Online]. Available: https://www.coursera.org/specializations/deep-learning.
[Accessed: 05-Dec-2019].

 [5]“02b6266c608492d1007bbb560e762ab4.png (1356×1114).” [Online]. Available:
http://images4.programmersought.com/948/02/02b6266c608492d1007bbb560e762ab4.png. [Accessed: 04-Dec-2019].

 [6]C. Szegedy et al., “Going Deeper with Convolutions,” arXiv:1409.4842 [cs], Sep. 2014.

 [7]P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “OverFeat: Integrated Recognition, Localization and Detection
using Convolutional Networks,” arXiv:1312.6229 [cs], Feb. 2014.

 [8]M. D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional Networks,” in Computer Vision – ECCV 2014, vol. 8689, D. Fleet,
T. Pajdla, B. Schiele, and T. Tuytelaars, Eds. Cham: Springer International Publishing, 2014, pp. 818–833.

 [9]A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” in Advances in Neural
Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097–
1105.

https://www.tensorflow.org/api_docs/python/tf/keras/applications/VGG16
http://www.image-net.org/
https://www.nvidia.com/gtx-700-graphics-cards/gtx-titan-black/
https://www.coursera.org/specializations/deep-learning
http://images4.programmersought.com/948/02/02b6266c608492d1007bbb560e762ab4.png

