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Preface
 “Very Deep Convolutional Networks for Large-Scale 

Image Recognition”

 VGG: Visual Geometry Group, Department of 

Engineering Science, University of Oxford.

 Karen Simonyan & Andrew Zisserman

 ICLR (International Conference on Learning 

Representation) 2015



Preface

 Krizhevsky et al. (2012): AlexNet

 Zeiler and Fergus (2013): ZFNet

 Sermanet et al. (2014): OverFeat

 Szegedy et al. (2014): Inception



Paper Review:

Introduction



Introduction

 ConvNets rise in image and video recognition:

 Large public databases: ImageNet

 High-performance computing: GPUs

 ILSVRC (ImageNet Large-Scale Visual Recognition 

Challenge) as testbed for image classification systems 



ImageNet

 14 million images

 1 million images with bounding 

boxes annotations



Introduction

 Previous improvements over AlexNet:

 Smaller receptive window size and stride (OverFeat, 

ZFNet)

 Training and testing over whole image on multiple scales 

(OverFeat)

 This paper improvement: network depth



ConvNet

Configurations



Architecture

 Input: 224x224 RGB image

 Preprocessing: subtracting mean RGB value, computed on the 

training set, from each pixel

 Output: probability for each of the 1000 classes

 ReLU activation function on hidden layers



Architecture
 Building blocks:

 Convolutional layer: 3x3 with 1-pixel padding or 1x1 filter, both with 

1-pixel stride

 Max-pool layer: 2x2 with 2-pixel stride

 Fully-connected layers: 4096 channels and 1000 channels

 Soft-max layer



Architecture



 Same building blocks as stated in previous slides

 Only differ in number of conv. layers

 Width of conv. layers (no. of channels) starts 

from 64 and increases by 2 until reaching 512

Configurations



 Less weights than in a more shallow net with larger conv. layer 

widths and receptive fields (144M weights in OverFeat)

Configurations



 VGG quite different from previous top-performers:

 ILSVRC-2012: 11×11 receptive field with stride 4 in 

AlexNet

 ILSVRC-2013 : 7×7 receptive field with stride 2 in ZFNet

and same as AlexNet and OverFeat

Discussion



 VGG uses very small 3 × 3 receptive fields with stride 1: 

 Stacks of layers with smaller fields have same effective receptive field as 

bigger fields

 Benefits:

 More non-linear rectification layers => More discriminative decision function

 Decrease the number of parameters:

 Three 3x3 conv. layers: 3(3^2*C^2) = 27 C^2 weights

 7×7 conv. layer: 7^2*C^2 = 49 C^2 parameters

 81% less for 3x3 vs 7x7

Discussion



 Benefits of 1 × 1 conv. layers:

 Increase non-linearity of decision function

 Does not affect receptive field of conv. layers

Discussion



 Lin et al. (2014):

 1x1 convolutional filters in “Network in Network” architecture 

 Ciresan et al. (2011):

 Used small-size convolution filters

 Significantly less deep nets.

 Did not evaluate on the large-scale ILSVRC dataset

 Goodfellow et al. (2014):

 Deep ConvNets (11 weight layers) in the task of street number recognition

and showed increased depth led to better performance

Discussion



 GoogLeNet (Inception):

 Top-performing entry of the ILSVRC-2014 classification task

 Similarly based on very deep ConvNets(22 weight layers) and small 

convolution filters (1×1, 3x3 and 5x5 convolutions). 

 Network topology is more complex

 Spatial resolution more reduced in first layers to decrease computation

 VGG outperforms Inception in single-network classification accuracy

Discussion



Classification 

Framework



 Mini-batch gradient descent with momentum

 Batch size : 256 

 Momentum : 0.9

 Regularization

 L2 penalty multiplier : 5 ∙ 10−4

 First two fully connected layers: dropout regularization with 

dropout ratio of 0.5

Training



 Learning rate: 0.01

 Decreased by a factor of 10 when the validation set accuracy 

stopped improving

 Learning rate decreases 3 times

 Stopped after 370K iterations (74 epochs)

Training



 Initialization of weights can be a problem

 Random initialization of weights with normal distribution (μ = 0, 𝜎2 =

10−2) and biases = 0

 Train Configuration A with random initializationand use pre-trained 

weights for other configurations:

 Initialize first 4 conv. layers and last 3 FC layers

 No decreasing learning rate

Training



 Crop-size fixed at 224x224

 Training set augmentation:

 Random RGB color shift

 Random horizontal flipping

Training image size



 Rescale to training scale S ≧ 224. Crop to 224x224

 Single-scale training (Fixed S): S = 256 or S = 384

 First, train S = 256 and then initialize S = 384 with pre-trained weights from S 

= 256 and smaller initial learning rate (10^-3)

 Multi-scale training: sampling from [Smin, Smax] and Smin = 256, Smax = 512

 Training set augmentation by scale jittering

 Fine-tuning with pre-trained weights from fixed S = 384

Training image size



 Rescale the image to a smallest side Q (not necessarily equal to S)

 Test-set augmentation: horizontal flipping of images = > Soft-max of 

original and flipped averaged to obtain final result

Testing



 Dense evaluation:

 FC layers convert to convolutional layers

 Variable resolution (depending on input)

 Results: a class score map with no. of channels = no. of classes

 Multi-crop: 50 crops per scale for a total  of 150 crops

Testing



 C++ Caffe (Convolutional Architecture for Fast

Feature Embedding) toolbox with some modification

 4 NVIDIA Titan Black GPUs:

 Speed-up of 3.75 times vs single GPU

 Single-net training from to 2-3 weeks

Implementation



Classification 

Experiments



Data

 ILSVRC-2012 dataset

 1000 classes

 1.3 M training images

 50 K validation images

 100 K testing images

 Two performance metrics: Top-1 error and Top-5 error



Single-Scale Evaluation
 Q = S for fixed S

 Q = 0.5(Smin + Smax) for jittered S ∈ [Smin, Smax]



 Local Response Normalization doesn’t help

Single-Scale Evaluation



 Performance clearly favors depth (size matters!)

Single-Scale Evaluation



 Prefers 3x3 to 1x1 filters

Single-Scale Evaluation



 Scale jittering at training helps performance

 Performance starts to saturate with depth 

Single-Scale Evaluation



Multi-Scale Evaluation
 Multi-Scale Evaluation

 Run model over several rescaled versions, or Q-values, 

and average resulting posteriors

 For fixed S, Q = {S − 32, S, S + 32}

 For jittered S, S ∈ [Smin; Smax], Q = {Smin, 0.5(Smin + 

Smax), Smax}



Same pattern: depth and prefer jittering, performance 

starts to saturate with depth 

Multi-Scale Evaluation



 Does slightly better than dense

 Best result is averaging both posteriors

Multi-Crop Evaluation



 Average soft-max class posteriors

 Only got multi-crop results after submission

2-net post submission better than 7-net

ConvNet Fusion



 7-net submission got 2nd place classification

 2-net post-submission even better!

 1st place, Szegedy, uses 7-nets

ISLVRC-2014 Challenge



Conclusion

 Main contribution: effect of depth on CNN performance

 VGG-16 and VGG-19 (and others) commonly found as 

pre-trained models as part of DL packages (TF, PyTorch)
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