
VGG Net
DEEP LEARNING PAPER PRESENTATION

GROUP 3

Index
 Preface

 Paper Review

 Introduction

 ConvNet Configurations

 Classification Framework

 Classification Experiments

 Conclusion

Preface
 “Very Deep Convolutional Networks for Large-Scale

Image Recognition”

 VGG: Visual Geometry Group, Department of

Engineering Science, University of Oxford.

 Karen Simonyan & Andrew Zisserman

 ICLR (International Conference on Learning

Representation) 2015

Preface

 Krizhevsky et al. (2012): AlexNet

 Zeiler and Fergus (2013): ZFNet

 Sermanet et al. (2014): OverFeat

 Szegedy et al. (2014): Inception

Paper Review:

Introduction

Introduction

 ConvNets rise in image and video recognition:

 Large public databases: ImageNet

 High-performance computing: GPUs

 ILSVRC (ImageNet Large-Scale Visual Recognition

Challenge) as testbed for image classification systems

ImageNet

 14 million images

 1 million images with bounding

boxes annotations

Introduction

 Previous improvements over AlexNet:

 Smaller receptive window size and stride (OverFeat,

ZFNet)

 Training and testing over whole image on multiple scales

(OverFeat)

 This paper improvement: network depth

ConvNet

Configurations

Architecture

 Input: 224x224 RGB image

 Preprocessing: subtracting mean RGB value, computed on the

training set, from each pixel

 Output: probability for each of the 1000 classes

 ReLU activation function on hidden layers

Architecture
 Building blocks:

 Convolutional layer: 3x3 with 1-pixel padding or 1x1 filter, both with

1-pixel stride

 Max-pool layer: 2x2 with 2-pixel stride

 Fully-connected layers: 4096 channels and 1000 channels

 Soft-max layer

Architecture

 Same building blocks as stated in previous slides

 Only differ in number of conv. layers

 Width of conv. layers (no. of channels) starts

from 64 and increases by 2 until reaching 512

Configurations

 Less weights than in a more shallow net with larger conv. layer

widths and receptive fields (144M weights in OverFeat)

Configurations

 VGG quite different from previous top-performers:

 ILSVRC-2012: 11×11 receptive field with stride 4 in

AlexNet

 ILSVRC-2013 : 7×7 receptive field with stride 2 in ZFNet

and same as AlexNet and OverFeat

Discussion

 VGG uses very small 3 × 3 receptive fields with stride 1:

 Stacks of layers with smaller fields have same effective receptive field as

bigger fields

 Benefits:

 More non-linear rectification layers => More discriminative decision function

 Decrease the number of parameters:

 Three 3x3 conv. layers: 3(3^2*C^2) = 27 C^2 weights

 7×7 conv. layer: 7^2*C^2 = 49 C^2 parameters

 81% less for 3x3 vs 7x7

Discussion

 Benefits of 1 × 1 conv. layers:

 Increase non-linearity of decision function

 Does not affect receptive field of conv. layers

Discussion

 Lin et al. (2014):

 1x1 convolutional filters in “Network in Network” architecture

 Ciresan et al. (2011):

 Used small-size convolution filters

 Significantly less deep nets.

 Did not evaluate on the large-scale ILSVRC dataset

 Goodfellow et al. (2014):

 Deep ConvNets (11 weight layers) in the task of street number recognition

and showed increased depth led to better performance

Discussion

 GoogLeNet (Inception):

 Top-performing entry of the ILSVRC-2014 classification task

 Similarly based on very deep ConvNets(22 weight layers) and small

convolution filters (1×1, 3x3 and 5x5 convolutions).

 Network topology is more complex

 Spatial resolution more reduced in first layers to decrease computation

 VGG outperforms Inception in single-network classification accuracy

Discussion

Classification

Framework

 Mini-batch gradient descent with momentum

 Batch size : 256

 Momentum : 0.9

 Regularization

 L2 penalty multiplier : 5 ∙ 10−4

 First two fully connected layers: dropout regularization with

dropout ratio of 0.5

Training

 Learning rate: 0.01

 Decreased by a factor of 10 when the validation set accuracy

stopped improving

 Learning rate decreases 3 times

 Stopped after 370K iterations (74 epochs)

Training

 Initialization of weights can be a problem

 Random initialization of weights with normal distribution (μ = 0, 𝜎2 =

10−2) and biases = 0

 Train Configuration A with random initializationand use pre-trained

weights for other configurations:

 Initialize first 4 conv. layers and last 3 FC layers

 No decreasing learning rate

Training

 Crop-size fixed at 224x224

 Training set augmentation:

 Random RGB color shift

 Random horizontal flipping

Training image size

 Rescale to training scale S ≧ 224. Crop to 224x224

 Single-scale training (Fixed S): S = 256 or S = 384

 First, train S = 256 and then initialize S = 384 with pre-trained weights from S

= 256 and smaller initial learning rate (10^-3)

 Multi-scale training: sampling from [Smin, Smax] and Smin = 256, Smax = 512

 Training set augmentation by scale jittering

 Fine-tuning with pre-trained weights from fixed S = 384

Training image size

 Rescale the image to a smallest side Q (not necessarily equal to S)

 Test-set augmentation: horizontal flipping of images = > Soft-max of

original and flipped averaged to obtain final result

Testing

 Dense evaluation:

 FC layers convert to convolutional layers

 Variable resolution (depending on input)

 Results: a class score map with no. of channels = no. of classes

 Multi-crop: 50 crops per scale for a total of 150 crops

Testing

 C++ Caffe (Convolutional Architecture for Fast

Feature Embedding) toolbox with some modification

 4 NVIDIA Titan Black GPUs:

 Speed-up of 3.75 times vs single GPU

 Single-net training from to 2-3 weeks

Implementation

Classification

Experiments

Data

 ILSVRC-2012 dataset

 1000 classes

 1.3 M training images

 50 K validation images

 100 K testing images

 Two performance metrics: Top-1 error and Top-5 error

Single-Scale Evaluation
 Q = S for fixed S

 Q = 0.5(Smin + Smax) for jittered S ∈ [Smin, Smax]

 Local Response Normalization doesn’t help

Single-Scale Evaluation

 Performance clearly favors depth (size matters!)

Single-Scale Evaluation

 Prefers 3x3 to 1x1 filters

Single-Scale Evaluation

 Scale jittering at training helps performance

 Performance starts to saturate with depth

Single-Scale Evaluation

Multi-Scale Evaluation
 Multi-Scale Evaluation

 Run model over several rescaled versions, or Q-values,

and average resulting posteriors

 For fixed S, Q = {S − 32, S, S + 32}

 For jittered S, S ∈ [Smin; Smax], Q = {Smin, 0.5(Smin +

Smax), Smax}

Same pattern: depth and prefer jittering, performance

starts to saturate with depth

Multi-Scale Evaluation

 Does slightly better than dense

 Best result is averaging both posteriors

Multi-Crop Evaluation

 Average soft-max class posteriors

 Only got multi-crop results after submission

2-net post submission better than 7-net

ConvNet Fusion

 7-net submission got 2nd place classification

 2-net post-submission even better!

 1st place, Szegedy, uses 7-nets

ISLVRC-2014 Challenge

Conclusion

 Main contribution: effect of depth on CNN performance

 VGG-16 and VGG-19 (and others) commonly found as

pre-trained models as part of DL packages (TF, PyTorch)

References
 [1]“tf.keras.applications.VGG16 | TensorFlow Core r2.0,” TensorFlow. [Online]. Available:

https://www.tensorflow.org/api_docs/python/tf/keras/applications/VGG16. [Accessed: 04-Dec-2019].

 [2]“ImageNet.” [Online]. Available: http://www.image-net.org/. [Accessed: 04-Dec-2019].

 [3]“GeForce GTX TITAN Black Gaming Graphics Card | NVIDIA.” [Online]. Available: https://www.nvidia.com/gtx-700-graphics-cards/gtx-
titan-black/. [Accessed: 05-Dec-2019].

 [4]“Deep Learning by deeplearning.ai,” Coursera. [Online]. Available: https://www.coursera.org/specializations/deep-learning.
[Accessed: 05-Dec-2019].

 [5]“02b6266c608492d1007bbb560e762ab4.png (1356×1114).” [Online]. Available:
http://images4.programmersought.com/948/02/02b6266c608492d1007bbb560e762ab4.png. [Accessed: 04-Dec-2019].

 [6]C. Szegedy et al., “Going Deeper with Convolutions,” arXiv:1409.4842 [cs], Sep. 2014.

 [7]P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “OverFeat: Integrated Recognition, Localization and Detection
using Convolutional Networks,” arXiv:1312.6229 [cs], Feb. 2014.

 [8]M. D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional Networks,” in Computer Vision – ECCV 2014, vol. 8689, D. Fleet,
T. Pajdla, B. Schiele, and T. Tuytelaars, Eds. Cham: Springer International Publishing, 2014, pp. 818–833.

 [9]A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” in Advances in Neural
Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097–
1105.

https://www.tensorflow.org/api_docs/python/tf/keras/applications/VGG16
http://www.image-net.org/
https://www.nvidia.com/gtx-700-graphics-cards/gtx-titan-black/
https://www.coursera.org/specializations/deep-learning
http://images4.programmersought.com/948/02/02b6266c608492d1007bbb560e762ab4.png

