VGG Net DEEP LEARNING PAPER PRESENTATION GROUP 3

Index

Preface

Paper Review

- Introduction
- ConvNet Configurations
- Classification Framework
- Classification Experiments

Preface

- "Very Deep Convolutional Networks for Large-Scale Image Recognition"
- VGG: Visual Geometry Group, Department of Engineering Science, University of Oxford.
- Karen Simonyan & Andrew Zisserman
- ICLR (International Conference on Learning Representation) 2015

Preface

Krizhevsky et al. (2012): AlexNet

- Zeiler and Fergus (2013): ZFNet
- Sermanet et al. (2014): OverFeat
- Szegedy et al. (2014): Inception

Paper Review: Introduction

Introduction

ConvNets rise in image and video recognition:

Large public databases: ImageNet

► High-performance computing: GPUs

ILSVRC (ImageNet Large-Scale Visual Recognition)

Challenge) as testbed for image classification systems

ImageNet

- 14 million images
- 1 million images with bounding boxes annotations

Numbers in brackets: (the number of vinsets in the subtree).	Tree	map Visualization	Images	f the Synset	Downloads			Percentilé IDs
ynsets in the subtree).		The traduitzacion	initiages o	i the synset	Dominouda			
- ImageNet 2011 Fall Release (32326)	- A)	ImageNet 2011 Fall R	elease 👌 Arti	fact, artefact				
🖡 plant, flora, plant life (4486)	Instru	umentality		Covering		Commodit	ty Cone	> Insert
geological formation, formation (17								
natural object (1112)								
sport, athletics (176)								
+- artifact, artefact (10504)								
+- instrumentality, instrumentation								
- device (2760)				Marker	Antiquity	Paving	Float	Block
implement (726)								
container (744)								
hardware, Ironware (0)								
+ equipment (479)				Track			1	
- automation (0)				Track	Fixture	Facility	Line	Strip
radiotherapy equipment (
recorder, recording equip								
naval equipment (11)								
teaching aid (1)				Weight	Excavation	Plaything	Building	Way
sports equipment (99)								
stock-in-trade (0)								
electrical system (0)								
game equipment (80)				Thing	Padding		_	
materiel, equipage (3)					Padding	Surface	Decoration	Creation
photographic equipment								
cooling system, engine c	Struct	\$1190 m		-				
- test equipment (0)	struc	ture						
naterial (4)				Facility	Opening	Sheet	Article	
gear, paraphernalia, app								Fabric
satellite, artificial satellite								. abile

Summary and Statistics (updated on April 30, 2010)

Overall

- Total number of non-empty synsets: 21841
- Total number of images: 14,197,122
- Number of images with bounding box annotations: 1,034,908
- Number of synsets with SIFT features: 1000
- Number of images with SIFT features: 1.2 million

Statistics of high level categories

High level category	# synset (subcategories)	Avg # images per synset	Total # images
amphibian	94	591	56K
animal	3822	732	2799K
appliance	51	1164	59K
bird	856	949	812K
covering	946	819	774K
device	2385	675	1610K
fabric	262	690	181K
fish	566	494	280K
flower	462	735	339K
food	1495	670	1001K

Introduction

Previous improvements over AlexNet:

- Smaller receptive window size and stride (OverFeat, ZFNet)
- Training and testing over whole image on multiple scales (OverFeat)
- This paper improvement: network depth

ConvNet Configurations

Architecture

► Input: 224x224 RGB image

Preprocessing: subtracting mean RGB value, computed on the

training set, from each pixel

Output: probability for each of the 1000 classes

ReLU activation function on hidden layers

Architecture

Building blocks:

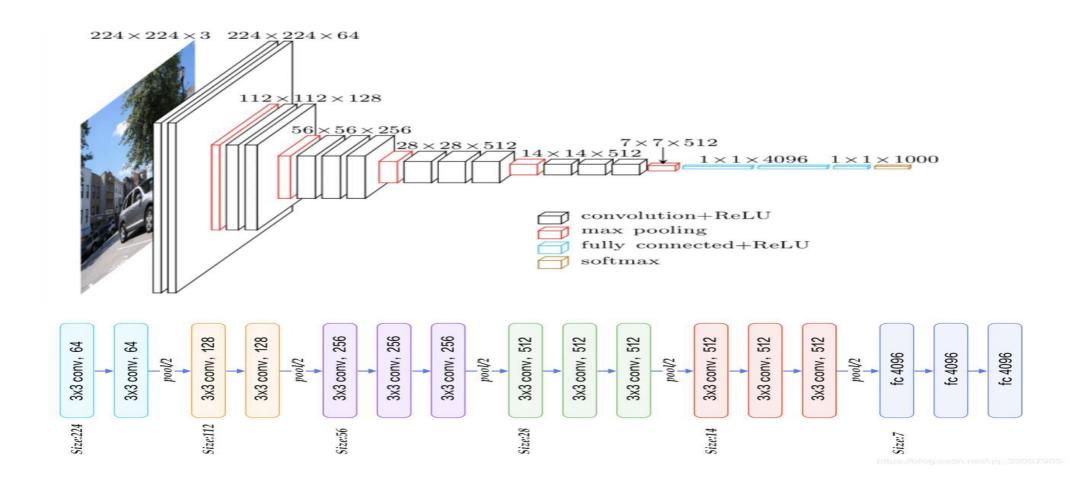
Convolutional layer: 3x3 with 1-pixel padding or 1x1 filter, both with

1-pixel stride

- ► Max-pool layer: 2x2 with 2-pixel stride
- Fully-connected layers: 4096 channels and 1000 channels

Soft-max layer

Architecture



Configurations

Same building blocks as stated in previous slides

Only differ in number of conv. layers

▶ Width of conv. layers (no. of channels) starts

from 64 and increases by 2 until reaching 512

ConvNet Configuration								
А	A-LRN	В	С	D	E			
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight			
layers	layers	layers	layers	layers	layers			
	i	nput (224×2	24 RGB image	e)				
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64			
	LRN	conv3-64	conv3-64	conv3-64	conv3-64			
			pool					
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128			
		conv3-128	conv3-128	conv3-128	conv3-128			
			pool					
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256			
			conv1-256	conv3-256	conv3-256			
					conv3-256			
			pool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
			conv1-512	conv3-512	conv3-512			
					conv3-512			
			pool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
			conv1-512	conv3-512	conv3-512			
					conv3-512			
			pool					
			4096					
			4096					
			1000					
	soft-max							

Configurations

Less weights than in a more shallow net with larger conv. layer

widths and receptive fields (144M weights in OverFeat)

Network	A,A-LRN	B	C	D	E		
Number of parameters	133	133	134	138	144		

Table 2: Number of parameters (in millions).

Layer	1	2	3	4	5	6	7	Output 8
Stage	conv + max	conv + max	conv	conv	conv + max	full	full	full
# channels	96	256	512	1024	1024	3072	4096	1000
Filter size	11x11	5x5	3x3	3x3	3x3	-	-	-
Conv. stride	4x4	1x1	1x1	1x1	1x1	-	-	-
Pooling size	2x2	2x2	-	-	2x2	-	-	-
Pooling stride	2x2	2x2	-	-	2x2	-	-	-
Zero-Padding size	-	-	1x1x1x1	1x1x1x1	1x1x1x1	-	-	-
Spatial input size	231x231	24x24	12x12	12x12	12x12	6x6	1x1	1x1

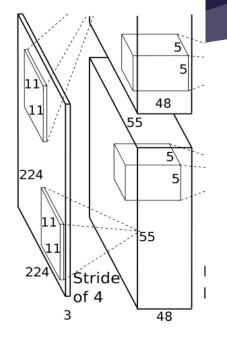
► VGG quite different from previous top-performers:

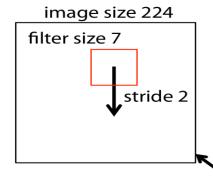
▶ ILSVRC-2012: 11×11 receptive field with stride 4 in

AlexNet

▶ ILSVRC-2013 : 7x7 receptive field with stride 2 in ZFNet

and same as AlexNet and OverFeat





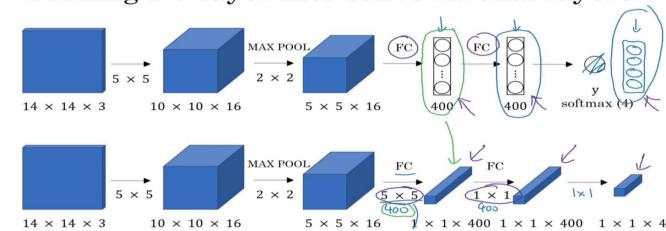
Input Image

► VGG uses very small 3 × 3 receptive fields with stride 1:

- Stacks of layers with smaller fields have same effective receptive field as bigger fields
- Benefits:
 - More non-linear rectification layers => More discriminative decision function
 - Decrease the number of parameters:
 - Three 3x3 conv. layers: $3(3^2*C^2) = 27 C^2$ weights
 - ► 7×7 conv. layer: $7^{2*}C^{2} = 49 C^{2}$ parameters
 - ▶ 81% less for 3x3 vs 7x7

• Benefits of 1×1 conv. layers:

- ▶ Increase non-linearity of decision function
- Does not affect receptive field of conv. layers



Turning FC layer into convolutional layers

- ► Lin et al. (2014):
 - 1x1 convolutional filters in "Network in Network" architecture
- Ciresan et al. (2011):
 - Used small-size convolution filters
 - Significantly less deep nets.
 - Did not evaluate on the large-scale ILSVRC dataset
- ► Goodfellow et al. (2014):
 - Deep ConvNets (11 weight layers) in the task of street number recognition and showed increased depth led to better performance

GoogLeNet (Inception):

- ► Top-performing entry of the ILSVRC-2014 classification task
- Similarly based on very deep ConvNets(22 weight layers) and small convolution filters (1x1, 3x3 and 5x5 convolutions).
- Network topology is more complex
- Spatial resolution more reduced in first layers to decrease computation

VGG outperforms Inception in single-network classification accuracy

Classification Framework

Training

Mini-batch gradient descent with momentum

- ▶ Batch size : 256
- Momentum: 0.9

Regularization

▶ L2 penalty multiplier : $5 \cdot 10^{-4}$

First two fully connected layers: dropout regularization with dropout ratio of 0.5

Training

► Learning rate: 0.01

Decreased by a factor of 10 when the validation set accuracy

stopped improving

Learning rate decreases 3 times

Stopped after 370K iterations (74 epochs)

Training

- Initialization of weights can be a problem
- Random initialization of weights with normal distribution ($\mu = 0, \sigma^2 = 10^{-2}$) and biases = 0
- Train Configuration A with random initialization and use pre-trained weights for other configurations:
 - ▶ Initialize first 4 conv. layers and last 3 FC layers
 - No decreasing learning rate

Training image size

- Crop-size fixed at 224x224
- Training set augmentation:
 - Random RGB color shift
 - Random horizontal flipping

Training image size

- ▶ Rescale to training scale $S \ge 224$. Crop to 224x224
- Single-scale training (Fixed S): S = 256 or S = 384
 - ▶ First, train S = 256 and then initialize S = 384 with pre-trained weights from S
 - = 256 and smaller initial learning rate (10^-3)
- ▶ Multi-scale training: sampling from $[S_{min}, S_{max}]$ and $S_{min} = 256$, $S_{max} = 512$
 - Training set augmentation by scale jittering
 - Fine-tuning with pre-trained weights from fixed S = 384

Testing

Rescale the image to a smallest side Q (not necessarily equal to S)

Test-set augmentation: horizontal flipping of images = > Soft-max of

original and flipped averaged to obtain final result

Testing

- Dense evaluation:
 - ► FC layers convert to convolutional layers
 - Variable resolution (depending on input)
 - Results: a class score map with no. of channels = no. of classes
- Multi-crop: 50 crops per scale for a total of 150 crops

Implementation

C++ Caffe (Convolutional Architecture for Fast Feature Embedding) toolbox with some modification

4 NVIDIA Titan Black GPUs:

- Speed-up of 3.75 times vs single GPU
- Single-net training from to 2-3 weeks

Classification Experiments

Data

ILSVRC-2012 dataset

- ▶ 1000 classes
- 1.3 M training images
- ► 50 K validation images
- ► 100 K testing images
- ► Two performance metrics: Top-1 error and Top-5 error

 \blacktriangleright Q = S for fixed S

Q = 0.5(Smin + Smax) for jittered S ∈ [Smin, Smax]

ComeNat config (Table 1)	amallaat in	ana aida	t_{0} to 1_{1} t_{0}	tom 5 yral armor (0/)
ConvNet config. (Table 1)	smallest image side		top-1 val. error (%)	top-5 val. error (%)
	train (S)	test (Q)		
Α	256	256	29.6	10.4
A-LRN	256	256	29.7	10.5
В	256	256	28.7	9.9
	256	256	28.1	9.4
C	384	384	28.1	9.3
	[256;512]	384	27.3	8.8
	256	256	27.0	8.8
D	384	384	26.8	8.7
	[256;512]	384	25.6	8.1
	256	256	27.3	9.0
Е	384	384	26.9	8.7
	[256;512]	384	25.5	8.0

Local Response Normalization doesn't help

ConvNet config. (Table 1)	smallest image side		top-1 val. error (%)	top-5 val. error (%)
	train (S)	test (Q)		
А	256	256	29.6	10.4
A-LRN	256	256	29.7	10.5
В	256	256	28.7	9.9
	256	256	28.1	9.4
C	384	384	28.1	9.3
	[256;512]	384	27.3	8.8
	256	256	27.0	8.8
D	384	384	26.8	8.7
	[256;512]	384	25.6	8.1
	256	256	27.3	9.0
Е	384	384	26.9	<mark>8.</mark> 7
	[256;512]	384	25.5	8.0

Performance clearly favors depth (size matters!)

ConvNet config. (Table 1)	smallest image side		top-1 val. error (%)	top-5 val. error (%)
	train (S)	test (Q)	-	-
А	256	256	29.6	10.4
A-LRN	256	256	29.7	10.5
В	256	256	28.7	9.9
	256	256	28.1	9.4
C	384	384	28.1	9.3
	[256;512]	384	27.3	8.8
	256	256	27.0	8.8
D	384	384	26.8	8.7
	[256;512]	384	25.6	8.1
	256	256	27.3	9.0
E	384	384	26.9	8.7
	[256;512]	384	25.5	8.0

Prefers 3x3 to 1x1 filters

ConvNet config. (Table 1)	smallest image side		top-1 val. error (%)	top-5 val. error (%)
	train (S)	test (Q)	•	• • • • •
А	256	256	29.6	10.4
A-LRN	256	256	29.7	10.5
В	256	256	28.7	9.9
	256	256	28.1	9.4
C	384	384	28.1	9.3
	[256;512]	384	27.3	8.8
	256	256	27.0	8.8
D	384	384	26.8	8.7
	[256;512]	384	25.6	8.1
	256	256	27.3	9.0
E	384	384	26.9	8.7
	[256;512]	384	25.5	8.0

Scale jittering at training helps performance

Performance starts to saturate with depth

ConvNet config. (Table 1)	smallest image side		top-1 val. error (%)	top-5 val. error (%)
Conviter comig. (Table 1)				cop-5 val. entor (70)
	train (S)	test (Q)		
Α	256	256	29.6	10.4
A-LRN	256	256	29.7	10.5
В	256	256	28.7	9.9
	256	256	28.1	9.4
C	384	384	28.1	9.3
	[256;512]	384	27.3	8.8
	256	256	27.0	8.8
D	384	384	26.8	8.7
	[256;512]	384	25.6	8.1
	256	256	27.3	9.0
Е	384	384	26.9	8.7
	[256;512]	384	25.5	8.0

Multi-Scale Evaluation

- Multi-Scale Evaluation
 - Run model over several rescaled versions, or Q-values,

and average resulting posteriors

- For fixed S, $Q = \{S 32, S, S + 32\}$
- For jittered S, S \in [Smin; Smax], Q = {Smin, 0.5(Smin + Smax), Smax}

Multi-Scale Evaluation

Same pattern: depth and prefer jittering, performance starts to saturate with depth

ConvNet config. (Table 1)	smallest image side		top-1 val. error (%)	top-5 val. error (%)
	train (S)	test (Q)		
В	256	224,256,288	28.2	9.6
	256	224,256,288	27.7	9.2
C	384	352,384,416	27.8	9.2
	[256; 512]	256,384,512	26.3	8.2
	256	224,256,288	26.6	8.6
D	384	352,384,416	26.5	8.6
	[256; 512]	256,384,512	24.8	7.5
	256	224,256,288	26.9	8.7
E	384	352,384,416	26.7	8.6
	[256; 512]	256,384,512	24.8	7.5

Table 4: ConvNet performance at multiple test scales.

Multi-Crop Evaluation

- Does slightly better than dense
- Best result is averaging both posteriors

Table 5: ConvNet evaluation techniques comparison. In all experiments the training scale S was sampled from [256; 512], and three test scales Q were considered: $\{256, 384, 512\}$.

ConvNet config. (Table 1)	Evaluation method	top-1 val. error (%)	top-5 val. error (%)
	dense	24.8	7.5
D	multi-crop	24.6	7.5
	multi-crop & dense	24.4	7.2
	dense	24.8	7.5
Е	multi-crop	24.6	7.4
	multi-crop & dense	24.4	7.1

ConvNet Fusion

- Average soft-max class posteriors
 - Only got multi-crop results after submission

Combined ConvNet models		Error			
		top-5 val	top-5 test		
ILSVRC submission					
(D/256/224,256,288), (D/384/352,384,416), (D/[256;512]/256,384,512)					
(C/256/224,256,288), (C/384/352,384,416)	24.7	7.5	7.3		
(E/256/224,256,288), (E/384/352,384,416)					
post-submission					
(D/[256;512]/256,384,512), (E/[256;512]/256,384,512), dense eval.	24.0	7.1	7.0		
(D/[256;512]/256,384,512), (E/[256;512]/256,384,512), multi-crop	23.9	7.2	-		
(D/[256;512]/256,384,512), (E/[256;512]/256,384,512), multi-crop & dense eval.	23.7	6.8	6.8		

Table 6: Multiple ConvNet fusion results.

2-net post submission better than 7-net

ISLVRC-2014 Challenge

- 7-net submission got 2nd place classification
- 2-net post-submission even better!
 - 1st place, Szegedy, uses 7-nets

Table 7: Comparison with the state of the art in ILSVRC classification. Our method is denoted as "VGG". Only the results obtained without outside training data are reported.

Method	top-1 val. error (%)	top-5 val. error (%)	top-5 test error (%)
VGG (2 nets, multi-crop & dense eval.)	23.7	6.8	6.8
VGG (1 net, multi-crop & dense eval.)	24.4	7.1	7.0
VGG (ILSVRC submission, 7 nets, dense eval.)	24.7	7.5	7.3
GoogLeNet (Szegedy et al., 2014) (1 net)	-	7.9	
GoogLeNet (Szegedy et al., 2014) (7 nets)	-	6.7	
MSRA (He et al., 2014) (11 nets)	-	-	8.1
MSRA (He et al., 2014) (1 net)	27.9	9.1	9.1
Clarifai (Russakovsky et al., 2014) (multiple nets)	-	-	11.7
Clarifai (Russakovsky et al., 2014) (1 net)	-	-	12.5
Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets)	36.0	14.7	14.8
Zeiler & Fergus (Zeiler & Fergus, 2013) (1 net)	37.5	16.0	16.1
OverFeat (Sermanet et al., 2014) (7 nets)	34.0	13.2	13.6
OverFeat (Sermanet et al., 2014) (1 net)	35.7	14.2	-
Krizhevsky et al. (Krizhevsky et al., 2012) (5 nets)	38.1	16.4	16.4
Krizhevsky et al. (Krizhevsky et al., 2012) (1 net)	40.7	18.2	-

Conclusion

Main contribution: effect of depth on CNN performance

VGG-16 and VGG-19 (and others) commonly found as pre-trained models as part of DL packages (TF, PyTorch)

VGG-11	30.98	11.37
VGG-13	30.07	10.75
VGG-16	28.41	9.62
VGG-19	27.62	9.12

References

- [1]"tf.keras.applications.VGG16 | TensorFlow Core r2.0," TensorFlow. [Online]. Available: <u>https://www.tensorflow.org/api_docs/python/tf/keras/applications/VGG16</u>. [Accessed: 04-Dec-2019].
- [2] "ImageNet." [Online]. Available: <u>http://www.image-net.org/</u>. [Accessed: 04-Dec-2019].
- [3] "GeForce GTX TITAN Black Gaming Graphics Card | NVIDIA." [Online]. Available: <u>https://www.nvidia.com/gtx-700-graphics-cards/gtx-titan-black/</u>. [Accessed: 05-Dec-2019].
- [4] "Deep Learning by deeplearning.ai," Coursera. [Online]. Available: <u>https://www.coursera.org/specializations/deep-learning</u>. [Accessed: 05-Dec-2019].
- [5] "02b6266c608492d1007bbb560e762ab4.png (1356×1114)." [Online]. Available: <u>http://images4.programmersought.com/948/02/02b6266c608492d1007bbb560e762ab4.png</u>. [Accessed: 04-Dec-2019].
- ▶ [6]C. Szegedy et al., "Going Deeper with Convolutions," arXiv:1409.4842 [cs], Sep. 2014.
- [7] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, "OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks," arXiv:1312.6229 [cs], Feb. 2014.
- [8]M. D. Zeiler and R. Fergus, "Visualizing and Understanding Convolutional Networks," in Computer Vision ECCV 2014, vol. 8689, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds. Cham: Springer International Publishing, 2014, pp. 818–833.
- [9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," in Advances in Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097– 1105.