Deep Learning Final Project

Group No. 3

Original Plan

OWhat We Actually Did

ODiscussion

OConclusion

STREET, MARKED OF PROPERTY AND INCOME.

0

e report the service to a star-space array of .

perst street group Late sproup Locar

evilyed int spread - wis(HCROPSPIRE CCR, seet);

CARLOCK NY HEADERS FER BLACK

(info) * mblocks+sizenf(gidt +), &FPUSER);

dirror_mod.use_x = False elif_operation == "MIRROR_Z": mirror_mod.use_x = False mirror_mod.use_y = False mirror_mod.use_y = False mirror_mod.use_z = True____

Tong)group into black

ir (capita economistic), gada set ottochoji, teki i de pendak ir dana sete ata v i men terne (TIMT, (2005)).

WYNALLIN -- MERCEPSPLAN, HORD

and a second second

79'PMD 's gring tate from a wore space array - it well be allocated already of

100

1002

-

the sea

#selection at the end —add back the deselected mirror modifier object mirror ob.select= 1

BE DRUBBLINGT, Derb 1

modifier_ob.select=1
bpy.context.scene.objects.active = modifier_ob
print("Selected" + str(modifier_ob)) # modifier ob is the active ob

> Original Plan

Duckietown

OStarted in MIT, 2016

Fig. 1. In Duckietown, inhabitants (duckies) are transported via an autonomous mobility service (Duckiebots). Duckietown is designed to be inexpensive and modular, yet still enable many of the research and educational opportunities of a full-scale self-driving car platform.

Fig. 2. The lane following pipeline runs on-board at 10Hz with a resolution of 320x240 and a latency of 110ms. The purple text indicates prior information.

Autonomous Driving

OSupervised learning: object detection (bounding boxes

and recognition) + steering angle and speed

Autonomy Architectures

Autonomy Architectures

Object Detection

Object Classification + Bounding Boxes

Self-driving: motor control

OGiven image: specific steering angle and speed / motor voltage

Preprocessing

Given image (X) >> 15 angles (divide range of angles into 15) (Y)

• Resize image to 101x101

• Speed is constant

JOYSTICK/24285.JPg	1.36500000954 0.386400014162
joystick/24286.jpg	2.11500000954 0.386400014162
joystick/24287.jpg	1.60500001907 0.386400014162
joystick/24288.jpg	1.60500001907 0.386400014162
joystick/24290.jpg	1.60500001907 0.386400014162
joystick/24291.jpg	1.60500001907 0.386400014162
joystick/24292.jpg	1.60500001907 0.386400014162
joystick/24293.jpg	6.10500001907 0.386400014162
joystick/24294.jpg	5.59499979019 0.386400014162
joystick/24295.jpg	5.83500003815 0.386400014162
joystick/24296.jpg	5.3250002861 0.386400014162
joystick/24297.jpg	5.3250002861 0.386400014162
joystick/24298.jpg	3.55500006676 0.386400014162
joystick/24300.jpg	2.80500006676 0.386400014162
joystick/24301.jpg	5.3250002861 0.386400014162
joystick/24302.jpg	5.3250002861 0.386400014162
joystick/24303.jpg	4.30499982834 0.386400014162
joystick/24304.jpg	4.81500005722 0.386400014162
joystick/24305.jpg	4.30499982834 0.386400014162
joystick/24306.jpg	4.06500005722 0.386400014162
joystick/24307.jpg	3.55500006676 0.386400014162
iovstick/24308.ipg	2.80500006676 0.386400014162

Models

• V1: Conv (I: 101x101, F: 10x10, S:1, P:0, ReLu) + Max Pooling (2x2) + Conv(I: 46x46, F: 9x9, S:1, P:0, ReLu) + FC (1444) + Softmax (0: 15) using only data provided by TA (DS_0) OV2: Conv (I: 101x101, F: 10x10, S:1, P:0, ReLu) + Max Pooling (2x2) + Conv(I: 46x46, F: 9x9, S:1, P:0, ReLu) + FC (1444) + Softmax (0: 15) using $DS_0 + Data$ recorded by us (DS_1)

Models

OV3.1: VGG-16 using DS_0 + DS_1

OV3.2: InceptionResNetV2 using DS_0 + DS_1

OV3.3: MobileNet using DS_0 + DS_1 ■

○V4: V3.1/3.2/3.3 (choose best) using DS_0 + DS_1 + Data from the internet (DS_2) and/or [DS_0 + DS_1] with transformations

Models

OV5: V4 but change classification output to more than 15

(30/60?)

OV6 (Final): V5 + Higher resolution images

• Above two require changing ncs_joy_mapper_node.py

What We Actually Did

Pre-processing

•Bag2txt.py: takes .bag file and outputs images with angle (15 classes)

OChallenges:

• Weird bugs: invalid classes (-1) and more pictures than labels

OImbalanced classes

ONo scalability

image_name = str(self.n)+ ".jpg"
cv2.imwrite("ele/"+image_name, cv_image)

self.n += 1

self.t = 0

if self.i == 9: self.test_arr[self.omega] += 1 if self.test_arr[self.omega] > 300: continue f2.write("ele/"+image_name+" "+str(self.omega)+"\n") self.i = 0 else: self.train_arr[self.omega] += 1 if self.train_arr[self.omega] > 300: continue f1.write("ele/"+image_name+" "+str(self.omega)+"\n") self.i += 1 if (self.n%1000 == 0): print("image crop:",self.n)

Pre-processing

- Modifications to bag2txt.py to allow for (easy) inclusion of new datasets, only one label.txt file, and output more or less imbalanced sets
- Datasets:
 - 4 K: bag2txt.py V1, only TA data
 - 6 K: bag2txt.py with our initial set of modifications, only TA data
 - 24 K: bag2txt.py without care for class balance, only TA data
 - O 3 K: only ours
 - 9 K: TA data (balanced) + ours
 - 27 K: TA data (imbalanced) + ours

Data Augmentation

• Histogram of current classes, calculate mean and standard deviation

• Based on this generate new images (and labels) by adding (random) Gaussian and Poisson noise

• Reduced standard deviation of sets

183M	./data_unbalanced_noduck_taonly_noaug	1.4G	./data_u
51M	./data_balanced_noduck_taonly_noaug	386M	./data_l
218M	./data unbalanced noduck taonly aug	218M	./data_u
4.0K	./saved models	4.0K	./saved
32M	./data unbalanced duck oursonly aug	32M	./data_u
26M	./data_unbalanced_duck_oursonly_noaug	209M	./data_u
11G	./trash	11G	./trash
74M	./data_balanced_combined_noaug	582M	./data_l
58M	./data_balanced_noduck_taonly_aug	68M	./data_l
132K	./plots	132K	./plots
118M	./data balanced combined aug	118M	./data

- unbalanced noduck taonly noaug
- balanced noduck taonly noaug
- unbalanced noduck taonly aug
- models
- unbalanced duck oursonly aug
- unbalanced duck oursonly noaug
- balanced combined noaug
- balanced noduck taonly aug
- balanced combined aug

Data Augmentation

Pictures before augmentation: 27464 data unbalanced combined aug/labels.txt Numbers per class before aug: {0: 209, 1: 113, 2: 259, 3: 414, 4: 518, 5: 2117 , 6: 5573, 7: 9028, 8: 4536, 9: 2020, 10: 862, 11: 530, 12: 448, 13: 310, 14: 5 27} Avg number per class if balanced: 1830.93333333333334 Standard deviation pre-data-aug: 2497.6985798041273 Current amount of pictures: 28000 Current amount of pictures: 29000 Current amount of pictures: 30000 Current amount of pictures: 31000 Current amount of pictures: 32000 Current amount of pictures: 33000 Current amount of pictures: 34000 Current amount of pictures: 35000 Total pictures after augmentation: 35844 Numbers per class after augmentation: {0: 627, 1: 339, 2: 777, 3: 1242, 4: 155 4, 5: 2117, 6: 5573, 7: 9028, 8: 4536, 9: 2020, 10: 2586, 11: 1590, 12: 1344, 1 3: 930, 14: 1581Standard deviation post-data-aug: 2243.5571101861133

Data Augmentation

Architecture

O30+ models

O2 baseline architectures:

•VGG(roup3)-16: VGG-16 with no dropout and L2 regularization on all layers

OShallowNet: 2 Conv Layers + 2 FCs

TensorBoard	GRAPHS	NACTIVE	• C	\$ (2))
Search nodes. Regexes	s supported.	ಜನಾ ಕಲ್ಪೆ ಹಾಗ ಕಲ್ಪಡಿಕಾರ್ ಕಾರ್ ಕಾರ್ ಕಾರ್			
Fit to Screen			Tel (Series) Tel (Series)		

Learning Curves

Network Architecture /Examples	3232	3978	6682	8992	9712	15416	24232
ShallowNet (3232 – 28896)	Learning Curves ShallowNet Group 3						
VGG(roup3)- 16 (3232 – 28896)	Learning Curves VGG(roup3)-16	Learning Curves VGG(roup.3)-16	Learning Curves VGC(roup3)-16				

OMost models were trained using RTX 2080 Ti, 16 GB RAM □

OVGG(roup3)-16 for either 1000/ 3000 epochs

OShallowNet for 1000 epochs

ODifferent L2 regularization coefficient from 0.5 to 0.0005

Deployment

• The most successful model was trained for 100 epochs, unknown regularization (probably 0.05) and smallest net

OHypothesis:

• Training so short it doesn't get to overfit to training/testing set

• Model so small inference time is closer to real-time performance

231 filter_size1 = 5	232 filter_size1 = 5
232—num_filters1 = 16	233+num_filters1 = 32
233 filter_size2 = 5	234 filter_size2 = 5
234 — num_filters2 = 36	235+ num_filters2 = 64
235 — fc_size = 128	236+ fc_size = 512

Discussion

General Problems

• Lack of time: require good organization and work distribution

OMany parameters to work with:

integration of software and

hardware

OHard to troubleshoot sources of error

Deep Learning Problems

Compilation of graph (no ArgMax/BatchNorm?)

TensorFlow 1.xx
 compatibility/lack of
 documentation

OInference time? Camera FPS?

Deep Learning Problems

Quality of Data: GIGO
 Explainability:
 What is the model actually learning?

DL Problems: Reproducibility

Bollen et al. National Science Foundation, 2015.

DL Problems: Reproducibility

Figure 1: Fraction of papers satisfying certain conditions by ML field. See the Appendix (Section 5) for detailed descriptions of the underlying data collection procedure. Note that ML4H consistently lags other subfields of machine learning on all measures of reproducibility save inclusion of proper statistical variance.

The Machine Learning Reproducibility Checklist (Version 1.2, Mar.27 2019)

For all models and algorithms presented, check if you include:

- A clear description of the mathematical setting, algorithm, and/or model.
- An analysis of the complexity (time, space, sample size) of any algorithm.
- A link to a downloadable source code, with specification of all dependencies, including external libraries.
- For any theoretical claim, check if you include:
- A statement of the result.
- A clear explanation of any assumptions.
- A complete proof of the claim.
- For all figures and tables that present empirical results, check if you include:
- A complete description of the data collection process, including sample size.
- A link to a downloadable version of the dataset or simulation environment.
- An explanation of any data that were excluded, description of any pre-processing step.
- An explanation of how samples were allocated for training / validation / testing.
- The range of hyper-parameters considered, method to select the best hyper-parameter configuration, and specification of all hyper-parameters used to generate results.
- The exact number of evaluation runs.
- A description of how experiments were run.
- $\hfill\square$ A clear definition of the specific measure or statistics used to report results.
- Clearly defined error bars.
- A description of results with <u>central tendency</u> (e.g. mean) & <u>variation</u> (e.g. stddev).

Conclusion

OThis project allowed us to get in touch with close to real life deep learning systems and all the challenges associated with them. ODeep learning is a powerful tool but as researchers and engineers it's important to evaluate the tradeoffs.

References

- 1.Baker, M. 1,500 scientists lift the lid on reproducibility. Nature News 533, 452 (2016).
- 2.Paull, L. et al. Duckietown: An open, inexpensive and flexible platform for autonomy education and research. in 2017 IEEE International Conference on Robotics and Automation (ICRA) 1497–1504 (IEEE, 2017). doi:10.1109/ICRA.2017.7989179.
- 3.Paull et al. 2017 Duckietown An open, inexpensive and flexible plat.pdf.
- 4.McDermott, M. B. A. et al. Reproducibility in Machine Learning for Health. arXiv:1907.01463 [cs, stat] (2019).
- 5.Pineau, J. ReproducibilityChecklist-v1.2. 1.
- 6.Pineau ReproducibilityChecklist-v1.2.pdf.
- 7.AIdea. <u>https://aidea-web.tw/topic/27dc9bbd-3ac5-458a-af41-abf23bd37e84?focus=intro</u>.
- 8.Duckietown: a playful road to learning robotics and AI by Duckietown Foundation Kickstarter. <u>https://www.kickstarter.com/projects/163162211/duckietown-a-playful-road-to-learning-robotics-and.</u>
- **O** 9.End-to-End Deep Learning for Self-Driving Cars. <u>https://devblogs.nvidia.com/deep-learning-self-driving-cars/.1</u>
- O 0.Intel[®] Movidius[™] Neural Compute Stick | Intel[®] Software. <u>https://software.intel.com/en-us/movidius-ncs</u>.
- O 11.NeurIPS 2019 Conference. <u>https://neurips.cc/Conferences/2019/</u>.
- 12.TensorFlow. TensorFlow https://www.tensorflow.org/.

Embedded Deep Learning Object Detection Model Compression Competition for Traffic in Asian Countries

Thank you!